
16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone
Lecture 16: From Optimization

Recap: 2-view Geometry from 3D-3D Correspondences

How to estimate the relative pose between the cameras from 3D-3D correspondences $\left(\boldsymbol{p}_{1, k}, \boldsymbol{p}_{2, k}\right)$ with $k=1, \ldots, N$?

Few More Comments:

3 points are sufficient to compute the relative pose from 3D-3D correspondences

We can use the solver seen today as a 3-point minimal solver within a RANSAC method

Also useful for 3D objects localization:

Other names: vector registration, point cloud alignment, ..

Today

- Optimization examples
- Estimation Basics

Part I: Estimation Machinery (more than what we need)

Example 1a: Triangulation (Structure Reconstruction)

Compute 3D point from known poses

$$
\lambda_{1} \tilde{\boldsymbol{x}}_{1}=\frac{\boldsymbol{K}_{1}\left[\boldsymbol{R}_{\mathrm{w}}^{\mathrm{c}_{1}} \boldsymbol{t}_{\mathrm{w}}^{\mathrm{c}_{1}}\right] \tilde{\boldsymbol{p}}^{\mathrm{w}}}{\boldsymbol{\Pi}_{1}} \quad \lambda_{2} \tilde{\boldsymbol{x}}_{2}=\frac{\boldsymbol{K}_{2}\left[\boldsymbol{R}_{\mathrm{w}}^{\mathrm{c}_{2}} \boldsymbol{t}_{\mathrm{w}}^{\mathrm{c}_{2}}\right] \tilde{\boldsymbol{p}}^{\mathrm{w}}}{\boldsymbol{\Pi}_{2}}
$$

Linear triangulation: $\min _{\left\|\tilde{\boldsymbol{p}}^{\mathrm{w}}\right\|=1}\left\|\boldsymbol{A} \tilde{\boldsymbol{p}}^{\mathrm{w}}\right\|^{2}$

Example 1b: Triangulation (Structure Reconstruction)

Compute 3D point from known poses

$$
\lambda_{1} \tilde{\boldsymbol{x}}_{1}=\frac{\boldsymbol{K}_{1}\left[\boldsymbol{R}_{\mathrm{w}}^{\mathrm{c}_{1}} \boldsymbol{t}_{\mathrm{w}}^{\mathrm{c}_{1}}\right] \tilde{\boldsymbol{p}}^{\mathrm{w}}}{\boldsymbol{\Pi}_{1}} \quad \lambda_{2} \tilde{\boldsymbol{x}}_{2}=\frac{\boldsymbol{K}_{2}\left[\boldsymbol{R}_{\mathrm{w}}^{\mathrm{c}_{2}} \boldsymbol{t}_{\mathrm{w}}^{\mathrm{c}_{2}}\right] \tilde{\boldsymbol{p}}^{\mathrm{w}}}{\boldsymbol{\Pi}_{2}}
$$

$\min _{\boldsymbol{p}^{\mathrm{w}}}\left\|\boldsymbol{x}_{1}-\pi\left(\boldsymbol{R}_{\mathrm{c}_{1}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{1}}^{\mathrm{w}}, \boldsymbol{p}^{\mathrm{w}}\right)\right\|^{2}+\left\|\boldsymbol{x}_{2}-\pi\left(\boldsymbol{R}_{\mathrm{c}_{2}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{2}}^{\mathrm{w}}, \boldsymbol{p}^{\mathrm{w}}\right)\right\|^{2}$

Example 2a: Motion Estimation

Example 2b: Motion Estimation

Time $1 \quad$ Time $2 \quad$ Time 3

$$
\min _{\substack{\left(\boldsymbol{R}_{\mathrm{c}_{i}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{i}}^{\mathrm{w}}\right), i=1,2,3 \\ \boldsymbol{p}_{k}^{\mathrm{w}}, k=1, \ldots, N}} \sum_{k=1}^{N} \sum_{i=1}^{3}\left\|\boldsymbol{x}_{k, i}-\pi\left(\boldsymbol{R}_{\mathrm{C}_{i}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{i}}^{\mathrm{w}}, \boldsymbol{p}_{k}^{\mathrm{w}}\right)\right\|^{2}
$$

Generalizes to K cameras: Bundle adjustment

Example 2b: Motion and Structure Estimation

Scale?
 p

Rigid transformations?

Generalizes to K cameras: Bundle adjustment

Structure from Motion

180 cameras, 88723 points
458642 projections
active camera: 4

Estimation Theory

Concerned with the estimation of unknown variables given (noisy) measurements and prior information

Estimator: a function of the measurements that approximates the unknown variables

Measurements that depend on some unknown variable \mathbf{x} :
$\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$

Estimator for \mathbf{x} :

$$
\begin{gathered}
\boldsymbol{x}^{\star}=\mathcal{F}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right) \\
\boldsymbol{x}^{\star} \approx \boldsymbol{x}
\end{gathered}
$$

Maximum Likelihood Estimation (MLE)

Assume we are given N measurements $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$ (e.g., pixel measurements) that are function of a variable we want to estimate \boldsymbol{x} (e.g., camera poses, points). Assume that we are also given the conditional distributions:

$$
\mathbb{P}\left(\boldsymbol{z}_{j} \mid \boldsymbol{x}\right)
$$

Than the maximum likelihood estimator (MLE) is defined as:

$$
\boldsymbol{x}_{\mathrm{MLE}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P} \underline{\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)}
$$

Measurement likelihood

where $\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)$ is also called the likelihood of the measurements given \boldsymbol{x}. Equivalently:

$$
\boldsymbol{x}_{\mathrm{MLE}}=\underset{\boldsymbol{x}}{\arg \min }-\underline{\log \mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)}
$$

Negative
log-likelihood

Maximum Likelihood Estimation (MLE)

Assume we are given N measurements $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$ (e.g., pixel measurements) that are function of a variable we want to estimate \boldsymbol{x} (e.g., camera poses, points). Assume that we are also given the conditional distributions:

$$
\mathbb{P}\left(\boldsymbol{z}_{j} \mid \boldsymbol{x}\right)
$$

Than the maximum likelihood estimator (MLE) is defined as:

$$
\boldsymbol{x}_{\mathrm{MLE}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P} \underline{\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)}
$$

Measurement likelihood

where $\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)$ is also called the likelihood of the measurements given \boldsymbol{x}. Equivalently:

$$
\boldsymbol{x}_{\mathrm{MLE}}=\underset{\boldsymbol{x}}{\arg \min }-\underline{\log \mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)}
$$

Negative
log-likelihood

Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$ (e.g., pixel measurements) that are function of a variable we want to estimate \boldsymbol{x} (e.g., camera poses, points). Maximum a Posteriori Estimation (MAP) is a generalization of MLE. Then the MAP estimator is:

$$
\begin{aligned}
& \underset{\boldsymbol{x}}{\arg \max } \mathbb{P} \overline{\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right)} \mathbb{P}(\boldsymbol{x}) \\
& \quad \text { Measurement } \\
& \quad \text { likelihood }
\end{aligned}
$$

Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$ (e.g., pixel measurements) that are function of a variable we want to estimate \boldsymbol{x} (e.g., camera poses, points). Maximum a Posteriori Estimation (MAP) is a generalization of MLE. Then the MAP estimator is:

$$
\boldsymbol{x}_{\mathrm{MAP}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P}\left(\boldsymbol{x} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)
$$

Using Bayes rule:

$$
\begin{gathered}
\boldsymbol{x}_{\mathrm{MAP}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P}\left(\boldsymbol{x} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)= \\
\arg \max \frac{\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right) \mathbb{P}(\boldsymbol{x})}{\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)}= \\
\arg \max \mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right) \mathbb{P}(\boldsymbol{x}) \\
\text { Measurement } \overline{\text { Priors }} \\
\text { likelihood }
\end{gathered}
$$

Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}$ (e.g., pixel measurements) that are function of a variable we want to estimate \boldsymbol{x} (e.g., camera poses, points). Maximum a Posteriori Estimation (MAP) is a generalization of MLE. Then the MAP estimator is:

$$
\boldsymbol{x}_{\mathrm{MAP}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P}\left(\boldsymbol{x} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)
$$

Using Bayes rule:

$$
\begin{gathered}
\boldsymbol{x}_{\mathrm{MAP}}=\underset{\boldsymbol{x}}{\arg \max } \mathbb{P}\left(\boldsymbol{x} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)= \\
\arg \max \frac{\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right) \mathbb{P}(\boldsymbol{x})}{\mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N}\right)}= \\
\arg \max \mathbb{P}\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{N} \mid \boldsymbol{x}\right) \mathbb{P}(\boldsymbol{x}) \\
\text { Measurement } \overline{\text { Priors }} \\
\text { likelihood }
\end{gathered}
$$

Assuming independence between measurements:

$$
\boldsymbol{x}_{\mathrm{MAP}}=\underset{\boldsymbol{x}}{\arg \min }-\sum_{j=1}^{N} \log \mathbb{P}\left(\boldsymbol{z}_{j} \mid \boldsymbol{x}\right)-\log \mathbb{P}(\boldsymbol{x})
$$

Optimization

Linear triangulation:

$$
\min _{\left\|\tilde{\boldsymbol{p}}^{\mathrm{w}}\right\|=1}\left\|\boldsymbol{A} \tilde{\boldsymbol{p}}^{\mathrm{w}}\right\|^{2}
$$

Nonlinear triangulation:

$$
\begin{aligned}
& \min _{p^{w}}\left\|\boldsymbol{x}_{1}-\pi\left(\boldsymbol{R}_{\mathrm{c}_{1}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{1}}^{\mathrm{w}}, \boldsymbol{p}^{\mathrm{w}}\right)\right\|^{2}+ \\
& \quad+\left\|\boldsymbol{x}_{2}-\pi\left(\boldsymbol{R}_{\mathrm{c}_{2}}^{\mathrm{w}}, \boldsymbol{t}_{\mathrm{c}_{2}}^{\mathrm{w}}, \boldsymbol{p}^{\mathrm{w}}\right)\right\|^{2}
\end{aligned}
$$

